
Tutorial 10: Lots of Math

CS 135 Fall 2007

November 14-16, 2007

This week’s tutorial covers the second half of lecture module 10 (on
lambda) and the beginning of module 11. Make sure you look at the updated
course notes for module 10 (http://www.student.cs.uwaterloo.ca/ cs135/handouts/10-
funcabst-handout.pdf). And here’s a link to the starter code for this tutorial
(t10-starter.scm).

1 Lambda Calculus

The reason we use the word lambda for anonymous functions comes from the
formal model of computation invented by Church and Kleene the better part
of a century ago. In this model, basically everything is a lambda application,
so there aren’t actually any defines or anything like that.

It can be rather tricky to write complicated functions under these re-
strictions. But you now have the tools to evaluate lambda expressions using
semantic substitution rules. So evaluate the following Scheme expression.
For an added challenge, try to figure out what the top-level lambda function
is actually doing. Don’t cheat and use DrScheme!

((lambda (x)

((lambda (x y)

(x x y))

(lambda (x y)

(cond ((= 1 y) 1)

(else (* y (x x (sub1 y))))))

x))

3)
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2 More Polynomial Adventures

Today, let’s represent polynomials in a more traditional way, as a list of all
coefficients from low to high order. So for example the polynomial

2x5 − 3x3 + x2 + 8x

would be represented as

(list 0 8 1 -3 0 2)

It may be useful to note that, a polynomial of the form f(x) = a+xg(x),
where g(x) is also a polynomial, would be represented as (cons a g), where
g is the representation of g(x).

2.1 Scalar Multiplication

Note that multiplying a polynomial by a scalar (i.e. a number) just means
multiplying each coefficient by that scalar.

Without using any recursive calls, write a function scalar-mul

which consumes a polynomial and a number and produces the result of mul-
tiplying that polynomial by the given number.

2.2 Evaluation Function

Every polynomial is in fact a function in just one variable, which we have been
calling x. But we are representing polynomials as lists, not as functions. Give
a function fun-for to convert from the list representation of a polynomial
to the functional representation. That is, fun-for should consume a single
polynomial and produce a function which takes one argument and returns
the value of the polynomial evaluated at that point.

2.3 Adder

Sometimes we might want to add to the same polynomial repeatedly. Write
a function adder which consumes a single polynomial and produces another
Scheme function. The function produced will consume another polynomial
and produce the sum of the two polynomials.
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3 Generative Recursion in Number Theory

3.1 Factorization

Write a function factors which consumes a single natural number and pro-
duces a list of all the prime factors of that number, with repeats, sorted from
least to greatest. So for example, (factor 20) should produce (list 2 2

5).
Hint: Write (and use) a helper function to find the least factor of a given

number.

3.2 Chinese Remaindering

An operation of central importance in cryptography and computational num-
ber theory is called the Chinese Remainder Algorithm (CRA). Given a set of
images of the form (vi, mi), where all the mi’s are relatively prime, the CRA
computes the smallest positive integer congruent to each vi modulo each mi.
In fact, the final result will always be less than the product of the mi’s, so
this really produces a single new image which combines all the input images,
in some sense.

In Scheme, we will represent each image with the structure

(define-struct img (value modulus)).

The starter code provides you with a function two-cra which consumes two
images and produces a single image using the CRA. So, for example, the
expression

(two-cra (make-img 1 3) (make-img 2 7)

produces the value (make-img 16 21), since 16 is congruent to 1 mod 3 and
2 mod 7.

Your task is to write a function multi-cra which consumes a list of images
and produces the single image which is the combination of all of them.

1. Write multi-cra using the foldr function. Note that every number is
congruent to 0 mod 1.

2. The two-crafunction works much more efficiently when the two moduli
are close to the same size. With our first implementation of multi-cra
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using foldr, this won’t be the case. So write a different version of
multi-cra that always calls two-cra on images with similarly-sized
moduli. Hint: The size of the list in your recursive call should be
roughly half the size of the original input list at each step.
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